Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.326
Filtrar
1.
J Thorac Dis ; 16(3): 2049-2059, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38617752

RESUMO

Background: Reportedly, there is a clear correlation between waist circumference (WC) and atrial fibrillation (AF). However, there is no specific discussion about the relationship between WC and non-valvular AF (NVAF) patients with heart failure. Our main purpose was to study the relationship between WC, central obesity (CO), and NVAF patients with heart failure. Methods: This is a retrospective cohort study. A total of 3,435 patients with NVAF in the First Affiliated Hospital of Xinjiang Medical University from January 2015 to December 2017 were enrolled. The targeted independent variable and the dependent variable were WC and CO and the presence of NVAF with heart failure, respectively. Univariate, multiple regression, and subgroup analyses were used to analyze their relationship. We used the receiver operating characteristic (ROC) curve to choose the better predictor of NVAF with heart failure between WC and CO and calculated the proposed cut-off value of WC in males and female separately. Results: The identified risk factors of NVAF with heart failure were sex, height, WC, CO, body mass index (BMI), fasting blood glucose (FBG), homocysteine (HCY), triglyceride (TG), low-density lipoprotein cholesterol (LDLC), hypertension, diabetes mellitus (DM), stroke, vascular disease, and plaque. Then, a binary logistic regression model indicated that the occurrence of NVAF patients with heart failure increased 10% with WC increasing 1 cm and had a 2.8-fold increased risk with CO compared to those without. The predictive value [area under the ROC curve (AUC)], specificity, sensitivity, and accuracy of WC for the disease risk of NVAF with heart failure were higher than those of CO. The proposed cut-off value of WC was 91.85 cm for males and 93.15 cm for females. The diagnostic value of WC for NVAF with heart failure was higher for females than it was for males. Conclusions: Our research found that WC is related to the presence of heart failure in the patients with NYAF and can predict the presence of NVAF with heart failure. Our findings may help to improve the treatment and care strategies of NVAF individuals with abdominal obesity.

2.
Pediatr Infect Dis J ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621163

RESUMO

Neisseria meningitidis carriage peaks in adolescents. This secondary analysis of a randomized controlled trial (NCT03089086) assessing 4CMenB herd protection in South Australia ("B-Part-of-It" study) explored school attributes linked to baseline carriage in 34,489 adolescents prevaccination. Carriage was higher in students attending single-sex [adjusted odds ratio (aOR): 1.49; 95% confidence interval (CI): 1.14-1.93], boarding (aOR: 1.92; 1.13-3.27) and government schools (aOR: 1.32, 1.09-1.61).

3.
Nat Commun ; 15(1): 3186, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622114

RESUMO

Transcription termination factor ρ is a hexameric, RNA-dependent NTPase that can adopt active closed-ring and inactive open-ring conformations. The Sm-like protein Rof, a homolog of the RNA chaperone Hfq, inhibits ρ-dependent termination in vivo but recapitulation of this activity in vitro has proven difficult and the precise mode of Rof action is presently unknown. Here, our cryo-EM structures of ρ-Rof and ρ-RNA complexes show that Rof undergoes pronounced conformational changes to bind ρ at the protomer interfaces, undercutting ρ conformational dynamics associated with ring closure and occluding extended primary RNA-binding sites that are also part of interfaces between ρ and RNA polymerase. Consistently, Rof impedes ρ ring closure, ρ-RNA interactions and ρ association with transcription elongation complexes. Structure-guided mutagenesis coupled with functional assays confirms that the observed ρ-Rof interface is required for Rof-mediated inhibition of cell growth and ρ-termination in vitro. Bioinformatic analyses reveal that Rof is restricted to Pseudomonadota and that the ρ-Rof interface is conserved. Genomic contexts of rof differ between Enterobacteriaceae and Vibrionaceae, suggesting distinct modes of Rof regulation. We hypothesize that Rof and other cellular anti-terminators silence ρ under diverse, but yet to be identified, stress conditions when unrestrained transcription termination by ρ may be detrimental.


Assuntos
Fator Rho , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator Rho/química , Transcrição Gênica , RNA/genética , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética
4.
Int J Biol Macromol ; : 131620, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631578

RESUMO

Transparent wood (TW) has attracted much attention in the field of energy saving building structural materials because of its high light transmittance, good thermal insulation performance and good toughness. However, the polymeric resins used in the present study to impregnate lignin-based wood templates are usually derived from petroleum-based chemical resources, which pose a fatal threat to human beings both in terms of consuming large amounts of resources and causing environmental pollution problems. It is therefore important to develop alternatives to petroleum-derived chemicals in renewable natural resources. Here, we report a green and sustainable TW production process based on the bio-recycling concept. Lignin-based sustainable resin (LSR) was prepared from waste lignin produced during delignification by polymerization of guaiacol. At the same time, according to FT-IR and NMR data analysis combined with previous studies, the synthesis mechanism of LSR was proposed, and this result provided a reference for bio-based resins made from biomass materials. The prepared lignin-based sustainable transparent wood (LSTW) has good light transmittance and good dimensional stability. In addition, the LSTW also shows good thermal insulation and indoor temperature regulation capabilities compared with the common glass.

6.
IEEE Open J Eng Med Biol ; 5: 216-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606400

RESUMO

Goal: Cervical cancer is one of the most common cancers in women worldwide, ranking among the top four. Unfortunately, it is also the fourth leading cause of cancer-related deaths among women, particularly in developing countries where incidence and mortality rates are higher compared to developed nations. Colposcopy can aid in the early detection of cervical lesions, but its effectiveness is limited in areas with limited medical resources and a lack of specialized physicians. Consequently, many cases are diagnosed at later stages, putting patients at significant risk. Methods: This paper proposes an automated colposcopic image analysis framework to address these challenges. The framework aims to reduce the labor costs associated with cervical precancer screening in undeserved regions and assist doctors in diagnosing patients. The core of the framework is the MFEM-CIN hybrid model, which combines Convolutional Neural Networks (CNN) and Transformer to aggregate the correlation between local and global features. This combined analysis of local and global information is scientifically useful in clinical diagnosis. In the model, MSFE and MSFF are utilized to extract and fuse multi-scale semantics. This preserves important shallow feature information and allows it to interact with the deep feature, enriching the semantics to some extent. Conclusions: The experimental results demonstrate an accuracy rate of 89.2% in identifying cervical intraepithelial neoplasia while maintaining a lightweight model. This performance exceeds the average accuracy achieved by professional physicians, indicating promising potential for practical application. Utilizing automated colposcopic image analysis and the MFEM-CIN model, this research offers a practical solution to reduce the burden on healthcare providers and improve the efficiency and accuracy of cervical cancer diagnosis in resource-constrained areas.

7.
Int Immunopharmacol ; 132: 112024, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608475

RESUMO

Ulcerative colitis (UC) is a recurrent intestinal disease with an increasing incidence worldwide that seriously affects the life of patients. Turtle peptide (TP) is a bioactive peptide extracted from turtles that has anti-inflammatory, antioxidant and anti-aging properties. However, studies investigating the effect of TP on the progression of UC are lacking. The aim of this study was to investigate effects and underlying mechanisms of TP and its derivative peptide GPAGPIGPV (GP-9) in alleviating UC in mice. The results showed that 500 mg/kg TP treatment significantly ameliorated colitis symptoms and oxidative stress in UC mice. TP alleviated intestinal barrier damage in UC mice by promoting mucosal repair and increasing the expression of tight junction proteins (ZO1, occludin and claudin-1). TP also modulated the composition of the gut microbiota by increasing the abundance of the beneficial bacteria Anaerotignum, Prevotellaceae_UCG-001, Alistipes, and Lachno-spiraceae_NK4A136_group and decreasing the abundance of the harmful bacteria Prevotella_9 and Parasutterella. Furthermore, we characterized the peptide composition of TP and found that GP-9 ameliorated the symptoms of dextran sodium sulfate (DSS)-induced colitis in mice by inhibiting the TLR4/NF-κB signaling pathway. In conclusion, TP and its derivative peptides ameliorated DSS-induced ulcerative colitis by inhibiting the expression of inflammatory factors and modulating the composition of the intestinal microbiota; this study provides a theoretical basis for the application of TP and its derivative peptides for their anti-inflammatory activity.

8.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607121

RESUMO

The magnetization mechanism of Co-doped BaTiO3 ultrathin films is a subject of debate, which results in difficulties with the design of new multiferroics based on BaTiO3 matrixes. With the aid of a first-principles approach, it was observed that when the interstitial site and Ti vacancy were filled with Co, the configuration behaved in a nonmagnetic manner, indicating the significance of the Co content. Moreover, in the case of Co substituting two neighboring Ti atoms, when a direct current field was applied in the [100] direction, the magnetic domains excluding those in the [100], [010], and [001] directions were directed away. Further, the magnetoelectric constant was evaluated at ~449.3 mV/cmOe, showing strong magnetoelectric coupling at room temperature. Clearly, our study indicates that strict control of Ba, Ti, O, and Co stoichiometry can induce an electric and magnetic field conversion in two-dimensional BaTiO3 and may provide a new candidate for single-phase multiferroics for application in next-generation multifunctional devices.

9.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607125

RESUMO

Photoelectrochemical cells (PECs) are an important technology for converting solar energy, which has experienced rapid development in recent decades. Transparent conductive oxides (TCOs) are also gaining increasing attention due to their crucial role in PEC reactions. This review comprehensively delves into the significance of TCO materials in PEC devices. Starting from an in-depth analysis of various TCO materials, this review discusses the properties, fabrication techniques, and challenges associated with these TCO materials. Next, we highlight several cost-effective, simple, and environmentally friendly methods, such as element doping, plasma treatment, hot isostatic pressing, and carbon nanotube modification, to enhance the transparency and conductivity of TCO materials. Despite significant progress in the development of TCO materials for PEC applications, we at last point out that the future research should focus on enhancing transparency and conductivity, formulating advanced theories to understand structure-property relationships, and integrating multiple modification strategies to further improve the performance of TCO materials in PEC devices.

10.
Neural Netw ; 175: 106315, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626618

RESUMO

Pre-trained Language Model (PLM) is nowadays the mainstay of Unsupervised Sentence Representation Learning (USRL). However, PLMs are sensitive to the frequency information of words from their pre-training corpora, resulting in anisotropic embedding space, where the embeddings of high-frequency words are clustered but those of low-frequency words disperse sparsely. This anisotropic phenomenon results in two problems of similarity bias and information bias, lowering the quality of sentence embeddings. To solve the problems, we fine-tune PLMs by leveraging the frequency information of words and propose a novel USRL framework, namely Sentence Representation Learning with Frequency-induced Adversarial tuning and Incomplete sentence filtering (Slt-fai). We calculate the word frequencies over the pre-training corpora of PLMs and assign words thresholding frequency labels. With them, (1) we incorporate a similarity discriminator used to distinguish the embeddings of high-frequency and low-frequency words, and adversarially tune the PLM with it, enabling to achieve uniformly frequency-invariant embedding space; and (2) we propose a novel incomplete sentence detection task, where we incorporate an information discriminator to distinguish the embeddings of original sentences and incomplete sentences by randomly masking several low-frequency words, enabling to emphasize the more informative low-frequency words. Our Slt-fai is a flexible and plug-and-play framework, and it can be integrated with existing USRL techniques. We evaluate Slt-fai with various backbones on benchmark datasets. Empirical results indicate that Slt-fai can be superior to the existing USRL baselines.

11.
Polymers (Basel) ; 16(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611251

RESUMO

Polyureas have been widely applied in many fields, such as coatings, fibers, foams and dielectric materials. Traditionally, polyureas are prepared from isocyanates, which are highly toxic and harmful to humans and the environment. Synthesis of polyureas via non-isocyanate routes is green, environmentally friendly and sustainable. However, the application of non-isocyanate polyureas is quite restrained due to their brittleness as the result of the lack of a soft segment in their molecular blocks. To address this issue, we have prepared polyester polyureas via an isocyanate-free route and introduced polyester-based soft segments to improve their toughness and endow high impact resistance to the polyureas. In this paper, the soft segments of polyureas were synthesized by the esterification and polycondensation of dodecanedioic acid and 1,4-butanediol. Hard segments of polyureas were synthesized by melt polycondensation of urea and 1,10-diaminodecane without a catalyst or high pressure. A series of polyester polyureas were synthesized by the polycondensation of the soft and hard segments. These synthesized polyester-type polyureas exhibit excellent mechanical and thermal properties. Therefore, they have high potential to substitute traditional polyureas.

12.
ACS Appl Mater Interfaces ; 16(15): 19283-19297, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578950

RESUMO

Lead-free BiFeO3-BaTiO3 (BF-BT) piezoceramics have sparked considerable interest in recent years due to their high piezoelectric performance and high Curie temperature. In this paper, we show how the addition of highly aligned porosity (between 40 and 60 vol %) improves the piezoelectric performance, sensing, and energy harvesting figures of merit in freeze-cast 0.70BiFeO3-0.30BaTiO3 piezoceramics compared to conventionally processed, nominally dense samples of the same composition. The dense and porous BF-BT ceramics had similar longitudinal piezoelectric coefficients (d33) immediately after poling, yet the dense samples were observed to age faster than those of porous ceramics. After 24 h, for example, the porous samples had significantly higher d33 values ranging from 112 to 124 pC/N, compared to 85 pC/N for the dense samples. Porous samples exhibited 3 and 5 times higher longitudinal piezoelectric voltage coefficient g33 and energy harvesting figure of merit d33g33 than dense samples due to the unexpected increase in d33 and decrease in relative permittivity with porosity. Spontaneous polarization (Ps) and remnant polarization (Pr) decrease as the porosity content increased from 37 to 59 vol %, as expected due to the lower volume of active material; however, normalized polarization values with respect to porosity level showed a slight increase in the porous materials relative to the dense BF-BT. Furthermore, the porous ceramics showed improved temperature-dependent strain-field response compared to the dense. As a result, these porous materials show excellent potential for use in high temperature sensing and harvesting applications.

13.
BMC Cancer ; 24(1): 411, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566028

RESUMO

BACKGROUND: Deleterious BRCA1/2 (BRCA) mutation raises the risk for BRCA mutation-related malignancies, including breast, ovarian, prostate, and pancreatic cancer. Germline variation of BRCA exhibits substantial ethnical diversity. However, there is limited research on the Chinese Han population, constraining the development of strategies for BRCA mutation screening in this large ethnic group. METHODS: We profile the BRCA mutational spectrum, including single nucleotide variation, insertion/deletion, and large genomic rearrangements in 2,080 apparently healthy Chinese Han individuals and 522 patients with BRCA mutation-related cancer, to determine the BRCA genetic background of the Chinese Han population, especially of the East Han. Incident cancer events were monitored in 1,005 participants from the healthy group, comprising 11 BRCA pathogenic/likely pathogenic (PLP) variant carriers and 994 PLP-free individuals, including 3 LGR carriers. RESULTS: Healthy Chinese Han individuals demonstrated a distinct BRCA mutational spectrum compared to cancer patients, with a 0.53% (1 in 189) prevalence of pathogenic/likely pathogenic (PLP) variant, alongside a 3 in 2,080 occurrence of LGR. BRCA1 c. 5470_5477del demonstrated high prevalence (0.44%) in the North Han Chinese and penetrance for breast cancer. None of the 3 LGR carriers developed cancer during the follow-up. We calculated a relative risk of 135.55 (95% CI 25.07 to 732.88) for the development of BRCA mutation-related cancers in the BRCA PLP variant carriers (mean age 42.91 years, median follow-up 10 months) compared to PLP-free individuals (mean age 48.47 years, median follow-up 16 months). CONCLUSION: The unique BRCA mutational profile in the Chinese Han highlights the potential for standardized population-based BRCA variant screening to enhance BRCA mutation-related cancer prevention and treatment.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Proteína BRCA1/genética , Mutação em Linhagem Germinativa , Proteína BRCA2/genética , Predisposição Genética para Doença , Detecção Precoce de Câncer , China/epidemiologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Mutação
14.
Appl Environ Microbiol ; : e0004624, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563787

RESUMO

Dietary fiber metabolism by gut microorganisms plays important roles in host physiology and health. Alginate, the major dietary fiber of daily diet seaweeds, is drawing more attention because of multiple biological activities. To advance the understanding of alginate assimilation mechanism in the gut, we show the presence of unsaturated alginate oligosaccharides (uAOS)-specific alginate utilization loci (AUL) in human gut microbiome. As a representative example, a working model of the AUL from the gut microorganism Bacteroides clarus was reconstructed from biochemistry and transcriptome data. The fermentation of resulting monosaccharides through Entner-Doudoroff pathway tunes the metabolism of short-chain fatty acids and amino acids. Furthermore, we show that uAOS feeding protects the mice against dextran sulfate sodium-induced acute colitis probably by remodeling gut microbiota and metabolome. IMPORTANCE: Alginate has been included in traditional Chinese medicine and daily diet for centuries. Recently discovered biological activities suggested that alginate-derived alginate oligosaccharides (AOS) might be an active ingredient in traditional Chinese medicine, but how these AOS are metabolized in the gut and how it affects health need more information. The study on the working mechanism of alginate utilization loci (AUL) by the gut microorganism uncovers the role of unsaturated alginate oligosaccharides (uAOS) assimilation in tuning short-chain fatty acids and amino acids metabolism and demonstrates that uAOS metabolism by gut microorganisms results in a variation of cell metabolites, which potentially contributes to the physiology and health of gut.

15.
Environ Sci Technol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606954

RESUMO

Halogenated organic compounds (HOCs) are a class of contaminants showing high toxicity, low biodegradability, and high bioaccumulation potential, especially chlorinated and brominated HOCs (Cl/Br-HOCs). Knowledge gaps exist on whether novel Cl/Br-HOCs could penetrate the placental barrier and cause adverse birth outcomes. Herein, 326 cord blood samples were collected in a hospital in Jinan, Shandong Province from February 2017 to January 2022, and 44 Cl/Br-HOCs were identified with communicating confidence level above 4 based on a nontarget approach, covering veterinary drugs, pesticides, and their transformation products, pharmaceutical and personal care products, disinfection byproducts, and so on. To our knowledge, the presence of closantel, bromoxynil, 4-hydroxy-2,5,6-trichloroisophthalonitrile, 2,6-dibromo-4-nitrophenol, and related components in cord blood samples was reported for the first time. Both multiple linear regression (MLR) and Bayesian kernel machine regression (BKMR) models were applied to evaluate the relationships of newborn birth outcomes (birth weight, length, and ponderal index) with individual Cl/Br-HOC and Cl/Br-HOCs mixture exposure, respectively. A significantly negative association was observed between pentachlorophenol exposure and newborn birth length, but the significance vanished after the false discovery rate correction. The BKMR analysis showed that Cl/Br-HOCs mixture exposure was significantly associated with reduced newborn birth length, indicating higher risks of fetal growth restriction. Our findings offer an overview of Cl/Br-HOCs exposome during the early life stage and enhance the understanding of its exposure risks.

16.
Anal Bioanal Chem ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607383

RESUMO

The elucidation of disease pathogenesis can be achieved by analyzing the low-abundance phosphopeptides in organisms. Herein, we developed a novel and easy-to-prepare polymer-coated nanomaterial. By improving the hydrophilicity and spatial conformation of the material, we effectively enhanced the adsorption of phosphopeptides and demonstrated excellent enrichment properties. The material was able to successfully enrich the phosphopeptides in only 1 min. Meanwhile, the material has high selectivity (1:2000), good loading capacity (100 µg/mg), excellent sensitivity (0.5 fmol), and great acid and alkali resistance. In addition, the material was applied to real samples, and 70 phosphopeptides were enriched from the serum of Parkinson's disease (PD) patients and 67 phosphopeptides were enriched from the serum of normal controls. Sequences Logo showed that PD is probably associated with threonine, glutamate, serine, and glutamine. Finally, gene ontology (GO) analysis was performed on phosphopeptides enriched in PD patients' serum. The results showed that PD patients expressed abnormal expression of the cholesterol metabolic process and cell-matrix adhesion in the biological process (BP), endoplasmic reticulum and lipoprotein in the cellular component (CC), and heparin-binding, lipid-binding, and receptor-binding in the molecular function (MF) as compared with normal individuals. All the experiments indicate that the nanomaterials have great potential in proteomics studies.

17.
Anal Sci ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607599

RESUMO

The silk biodegradation process remains unclear and requires elucidation with advanced analytical tools. To address this challenge, the role of microbial primary metabolites in the deterioration of ancient silk was investigated using metabolomics and proteomics techniques in this work. The oxalic and palmitic acids were separately identified as the most abundant organic and fatty acid metabolites for silk-fabric deterioration via metabolomics. Proteomics showed that oxalic acid accelerated the degradation of silk proteins, revealing changes at the molecular level in silk. A high concentration of oxalic acid promoted the dissolution of peptides by activating the cleavage activity of various amino acids on the molecular chain of silk protein. Palmitic acid formed sedimentary particulate matter with peptides solubilised from silk proteins, indicating the possibility that traces of ancient-silk proteins remained in the fatty acids. The work presented new techniques and concepts for studying the degradation of historical fabrics and contributed to the proposal of effective measures to prevent microbial attack on silk.

18.
EMBO Rep ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594391

RESUMO

Cancer patients undergoing treatment with antineoplastic drugs often experience chemotherapy-induced neuropathic pain (CINP), and the therapeutic options for managing CINP are limited. Here, we show that systemic paclitaxel administration upregulates the expression of neurotrophin-3 (Nt3) mRNA and NT3 protein in the neurons of dorsal root ganglia (DRG), but not in the spinal cord. Blocking NT3 upregulation attenuates paclitaxel-induced mechanical, heat, and cold nociceptive hypersensitivities and spontaneous pain without altering acute pain and locomotor activity in male and female mice. Conversely, mimicking this increase produces enhanced responses to mechanical, heat, and cold stimuli and spontaneous pain in naive male and female mice. Mechanistically, NT3 triggers tropomyosin receptor kinase C (TrkC) activation and participates in the paclitaxel-induced increases of C-C chemokine ligand 2 (Ccl2) mRNA and CCL2 protein in the DRG. Given that CCL2 is an endogenous initiator of CINP and that Nt3 mRNA co-expresses with TrkC and Ccl2 mRNAs in DRG neurons, NT3 likely contributes to CINP through TrkC-mediated activation of the Ccl2 gene in DRG neurons. NT3 may be thus a potential target for CINP treatment.

19.
Nano Lett ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593087

RESUMO

Flatband localization endowed with robustness holds great promise for disorder-immune light transport, particularly in the advancement of optical communication and signal processing. However, effectively harnessing these principles for practical applications in nanophotonic devices remains a significant challenge. Herein, we delve into the investigation of on-chip photonic localization in AB cages composed of indirectly coupled microring lattices. By strategically vertically shifting the auxiliary rings, we successfully introduce a magnetic flux of π into the microring lattice, thereby facilitating versatile control over the localization and delocalization of light. Remarkably, the compact edge modes of this structure exhibit intriguing topological properties, rendering them strongly robust against disorders, regardless of the size of the system. Our findings open up new avenues for exploring the interaction between flatbands and topological photonics on integrated platforms.

20.
J Colloid Interface Sci ; 666: 141-150, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38593649

RESUMO

The defects and interface engineering are efficient approaches to adjust the physical and chemical properties of nanomaterials to enhance catalytic performance. In this study, we report a new MOFs-driven porous Cu2S/MoS2-Vs octahedral semiconductor with heterostructure and photothermal effect. The introduction of sulfur vacancies directly improves the adsorption performance of CO2, and the formation of heterostructure significantly increases the charge transfer rate. The C-penetrating material obtained from MOFs not only acts as an octahedral skeleton support, but also gives photothermal effects under photoelectric conditions. The formation rate of sole C2 products in photoelectrocatalytic CO2 reduction by using Cu2S/MoS2-Vs heterostructure is up to 52 µM·h-1·cm-2 equal to the total electron transfer rate of 541 µM·h-1·cm-2. The carbene mechanism and reaction pathways were proposed and verified by 13CO2 isotopic labelling and operando Fourier transform infrared (FT-IR) spectra. The important intermediates of *CO2-, *CO, *CHO and *CHO-CHO were identified by operando FT-IR spectra. In the comparative experiments, the photothermal electrons are beneficial to C2 products. DFT calculations indicate that the presence of S vacancies (Vs) reduces the energy barrier for product generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...